
Abstract — In this paper, we present a computation strategy
in order to solve integral equations in electromagnetism.
Nowadays, Graphics Processing Units (GPU) can be found in
any standard and recent computers. This paper proposes to use
these units in order to improve the computation speed of a
problem solved thanks to integral method. The Java language
and the JCuda library, not so common in our scientific
community have been used and we report a speed-up to 3 times
for the solving of an electrostatic problem.

I. INTRODUCTION

Integral equation methods (IEM) are currently widely
used in electromagnetic modeling. Unlike the finite element
method (FEM), they do not require the meshing of non-
active materials like air. However, they are based on the
computation of electromagnetic interactions between all
elements (i.e. full interaction). Therefore, they lead to fully
dense systems of equations. They are well known to be
easily parallelizable because of the independence of
interactions. Moreover, the interest of IEM has considerably
increased since the emergence of acceleration methods such
as the fast multipole method (FMM). In this kind of
algorithm, near and far field interactions are separated.
While far fields computations are highly accelerated by
FMM, the near field interaction is treated classically. In
particular, full near field matrices have to be computed with
a high performance strategy in order to keep the advantage
of using FMM.

In this work, we focus on the implementation of a
parallelized and vectorized full matrix interaction
computation strategy, developed on a standard personal
computer equipped with a CUDA capable GPU [1]. The
main software is developed thanks to Java language so the
use of the JCuda library enables GPU interfacing directly
from Java [2]. The choice of using Java can seem to be
surprising for intensive computations, but the use of this
language enables robust and fast software developments and
performance are not so bad in comparison with most
commonly used language like C++ [3].

In a first step, a high-performance vectorized matrix
library has been developed in our lab showing that the use
of Java can be competitive for numerical matrix
manipulation. In a second step, we use the graphic card of
our computer to speed-up the computation time. To
illustrate this work, we present numerical results dealing
with the resolution of a classical electrostatic problem (i.e.
the computation of charge distribution on the surface of a
perfect conductor).

II. CHARGE DENSITY COMPUTATION

We consider a perfect conductor in free space associated
to a known potential V0. To compute the charge density in
electrostatics, we have to solve the following integral
equation:

dS
r

V
S∫∫= σ

πε0
0 4

1 (1)

Where S is the surface of the conductor, σ is the charge
density, ε0 is the vacuum permittivity and r is the distance
between the point where the potential is expressed (on the
conductor) and the integration point.

The surface is meshed into a set of triangle patches. The
system of equations is generated using a point matching
approach with 0-order shape function. This method is very
simple but has already shown its accuracy for solving such
problem. Once the set of equations is obtained, the full
interaction problem is solved by a LU decomposition.

III. VECTORIZED JAVA COMPUTATION

In (1), if we consider that S is meshed into N cells, we
have to compute N integrals on N cells. This is why time
needed to do that increase in N2. Moreover, integrals of (1)
are sometime numerically singular (in particular for the
computation of the interaction of an element on itself so
when r is very small). The use of analytical formulae [4] to
evaluate the kernel of (1) is then preferred but these
computations can be time-consuming.

In our approach, we prefer to compute integrals thanks to
a numerical Gauss integration technique. With such an
approach, we have three overlapped loops in our algorithm:

Let us note that it is possible to change the order of the

loops and let us remember that all the interactions are
independent. To improve the computation speed, we are
going to vectorize a loop with a high number of indexes:

JCuda vectorized and parallelized computation strategy for solving integral
equations in electromagnetism on a standard personal computer

C. Rubeck, B. Bannwarth, O. Chadebec, B. Delinchant, J-P. Yonnet and J-L. Coulomb
Grenoble Electrical Engineering Laboratory (G2Elab)

Grenoble INP – Université Jospeh Fourier - CNRS UMR 5269
38402 Saint Martin d’Hères Cedex, France
christophe.rubeck@g2elab.grenoble-inp.fr

// Loop 1: on all the N elements
For i=0,1,…N // can be parallelized if multi-CPU
 // Loop 2: interaction of one element with all the N elements
 For j=0,1,…N
 // Loop 3: Gauss integration
 For k=0,…number of Gauss points
 Integral(i,j) += 1/r(i,j,k) * weight(k) * jacobian(k)
 End
 End
End

An optimized vectorized Java matrix package has been

developed in our laboratory. It is based on contiguous
memory storage of the matrix, adapted indexes and macro
matrix manipulation commands.

Before computing the matrix, a pre-processing is needed.
A table is generated containing all the coordinates of
elements Gauss points in the main referential. The process
is repeated for the Gauss weights and jacobian.
 In a final step, let us remember that artificial singularities
have been introduced with the numerical process. We fix it
by correcting the diagonal coefficients by the analytical
solution. More sophisticated and more precise correction
techniques will be discussed in the full paper.

IV. PARALELLISED JCUDA IMPLEMENTATION

Thanks to JCuda library, it is possible to call CUDA
functions from Java. A Java GPU matrix library has been
developed. It enables the management of the GPU memory
allocation, the data transfer between it and the host CPU,
matrix manipulations and the call of CUDA kernels.

Performances in CUDA programming are better if the
algorithm is massively parallel, therefore we have to
compute the matrix with a high number of threads. The
chosen approach allocates one thread to each interaction.
So, there are N×N threads defined. Each thread contains
only the Gauss integration loop. This approach is very
simple but has shown a good efficiency. Some
optimizations on GPU architecture dealing with the use of
shared memory will be discussed in the full paper.

Like previously, Gauss point, jacobian and weight tables
are generated on the CPU, then they are sent to the graphic
card which returns the integration matrix. Currently, the
diagonal correction is still operated by the CPU.

V. PRELIMINARY RESULTS

We have tested our approach on personal computer
equipped with a GeForce 320M that is CUDA capable. It
contains 48 graphical cores and 250MB of shared memory.
The CPU is an Intel C2D 2.4 GHz with 4GB of RAM. The
operating system (MacOS 10.6) is full 64 bits. Let us notice
that this kind of computer is very classical and low cost.

In our example, a square plate iso-potential conductor (1
by 1 cm) is modeled. This example is very simple but the
goal here is to evaluate the computation performances. The
host computer computation is performed in double precision
with 2 CPUs whereas the GPU device maximum supports
single precision. The numerical integration on triangles is
provided with 7 Gauss points.

The time of the interaction matrix computation for only
numerical integration is given for problems with different

mesh sizes (fig. 1). Les us notice that the quality of the
solution is only few influenced by the single precision
conversion (less than 6e-5 % of error on charge density).

10

100

1000

10000

100 1000 10000
number of elementsti

m
e

(m
s)

CPUs
Mem. alloc. and conversion
 + transfert data to device
 + Cuda kernel execution
 + transfert result to host
 + conversion to double

Figure 1 : comparison of CPU and GPU (cumulative) computation times.

First of all, the Java vectorized strategy seems to be quite

efficient and fast (less than 5s to compute a 4000×4000
fully dense matrix). As it was expected, the GPU
computation is faster than the CPU one. We note a speed-up
of around 3 times in spite of the fact that the graphic card
used here is a very low cost one.
 As expected, the time needed to transfer and convert the
data from the graphic card to the computer decrease the
performance of the algorithm. However, several ways to do
it more efficiently have still to be studied.
 The portability of the Java code has been tested on a
win32 computer. After the setting of the JCuda library, only
a recompilation of the Cuda kernel is needed to make the
experiments. We do not report a speed-up because the
graphic card (Quadro NVS 160M) only owns 8 cores.

VI. CONCLUSION AND PERSPECTIVES

We have reported in this paper a strategy for computing
electromagnetic fields on Java platform with the JCuda
library on a standard computer. These first results are
maybe not so impressive, but these techniques are still not
optimized and can be applied without buying additional
hardware device. A far fields GPU-based FMM technique is
currently under development to improve the speed of the
computation like in the presented near field computation.

VII. REFERENCES

[1] NVIDIA. (2010, Oct.) “NVIDIA CUDA programming guide”,
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/doc
s/CUDA_C_Programming_Guide.pdf

[2] M. Hutter, JCuda (Java bindings for CUDA), http://www.jcuda.de/
[3] V. Reinauer, T. Wendland, C. Scheiblich, R. Banucu, “Object-

Oriented Development and Runtime Investigation of 3-D
electrostatic FEM problems in Pure Java”, Proceeding of CEFC 2010
Confrenece, to be published in IEEE Trans. Mag.,2011.

[4] S. Rao, A. Glisson, D. Wilton, and B. Vidula, “A simple numerical
solution procedure for statics problems involving arbitrary-shaped
surfaces,” IEEE Trans. Antennas Propagat. vol. 27, no. 5, pp. 604–
608, Sep 1979.

// Loop 1: on all the N elements
For i=0,1,…N // can be parallelized if multi-CPU
 // Loop 2: Gauss integration
 For k=0,1,…N
 // Vectorized interaction of one element with all elements
 Integral(i,:) += 1/r(i,:,k) * weight(k:) * jacobian(k:)
 End
End

