
Abstract — In this paper, we present a computation strategy 
in order to solve integral equations in electromagnetism. 
Nowadays, Graphics Processing Units (GPU) can be found in 
any standard and recent computers. This paper proposes to use 
these units in order to improve the computation speed of a 
problem solved thanks to integral method. The Java language 
and the JCuda library, not so common in our scientific 
community have been used and we report a speed-up to 3 times 
for the solving of an electrostatic problem. 

I. INTRODUCTION 

Integral equation methods (IEM) are currently widely 
used in electromagnetic modeling. Unlike the finite element 
method (FEM), they do not require the meshing of non-
active materials like air. However, they are based on the 
computation of electromagnetic interactions between all 
elements (i.e. full interaction). Therefore, they lead to fully 
dense systems of equations. They are well known to be 
easily parallelizable because of the independence of 
interactions. Moreover, the interest of IEM has considerably 
increased since the emergence of acceleration methods such 
as the fast multipole method (FMM). In this kind of 
algorithm, near and far field interactions are separated. 
While far fields computations are highly accelerated by 
FMM, the near field interaction is treated classically. In 
particular, full near field matrices have to be computed with 
a high performance strategy in order to keep the advantage 
of using FMM. 

In this work, we focus on the implementation of a 
parallelized and vectorized full matrix interaction 
computation strategy, developed on a standard personal 
computer equipped with a CUDA capable GPU [1]. The 
main software is developed thanks to Java language so the 
use of the JCuda library enables GPU interfacing directly 
from Java [2]. The choice of using Java can seem to be 
surprising for intensive computations, but the use of this 
language enables robust and fast software developments and 
performance are not so bad in comparison with most 
commonly used language like C++ [3]. 

In a first step, a high-performance vectorized matrix 
library has been developed in our lab showing that the use 
of Java can be competitive for numerical matrix 
manipulation. In a second step, we use the graphic card of 
our computer to speed-up the computation time. To 
illustrate this work, we present numerical results dealing 
with the resolution of a classical electrostatic problem (i.e. 
the computation of charge distribution on the surface of a 
perfect conductor). 

II. CHARGE DENSITY COMPUTATION 

We consider a perfect conductor in free space associated 
to a known potential V0. To compute the charge density in 
electrostatics, we have to solve the following integral 
equation: 
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Where S is the surface of the conductor, σ is the charge 
density, ε0 is the vacuum permittivity and r is the distance 
between the point where the potential is expressed (on the 
conductor) and the integration point.  

The surface is meshed into a set of triangle patches. The 
system of equations is generated using a point matching 
approach with 0-order shape function. This method is very 
simple but has already shown its accuracy for solving such 
problem. Once the set of equations is obtained, the full 
interaction problem is solved by a LU decomposition.  

III.  VECTORIZED JAVA COMPUTATION 

In (1), if we consider that S is meshed into N cells, we 
have to compute N integrals on N cells. This is why time 
needed to do that increase in N2. Moreover, integrals of (1) 
are sometime numerically singular (in particular for the 
computation of the interaction of an element on itself so 
when r is very small). The use of analytical formulae [4] to 
evaluate the kernel of (1) is then preferred but these 
computations can be time-consuming. 

In our approach, we prefer to compute integrals thanks to 
a numerical Gauss integration technique. With such an 
approach, we have three overlapped loops in our algorithm:  

 
 
 
 
 
 
 
 
 
 
 
Let us note that it is possible to change the order of the 

loops and let us remember that all the interactions are 
independent. To improve the computation speed, we are 
going to vectorize a loop with a high number of indexes: 
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// Loop 1: on all the N elements 
For i=0,1,…N // can be parallelized if multi-CPU 
 // Loop 2: interaction of one element with all the N elements 
 For j=0,1,…N 
  // Loop 3: Gauss integration 
  For k=0,…number of Gauss points 
   Integral(i,j) += 1/r(i,j,k) * weight(k) * jacobian(k) 
  End 
 End 
End 



 
 
 
 
 
 
 
 
An optimized vectorized Java matrix package has been 

developed in our laboratory. It is based on contiguous 
memory storage of the matrix, adapted indexes and macro 
matrix manipulation commands.  

Before computing the matrix, a pre-processing is needed. 
A table is generated containing all the coordinates of 
elements Gauss points in the main referential. The process 
is repeated for the Gauss weights and jacobian. 
 In a final step, let us remember that artificial singularities 
have been introduced with the numerical process. We fix it 
by correcting the diagonal coefficients by the analytical 
solution. More sophisticated and more precise correction 
techniques will be discussed in the full paper.  

IV.  PARALELLISED JCUDA IMPLEMENTATION 

Thanks to JCuda library, it is possible to call CUDA 
functions from Java. A Java GPU matrix library has been 
developed. It enables the management of the GPU memory 
allocation, the data transfer between it and the host CPU, 
matrix manipulations and the call of CUDA kernels. 

Performances in CUDA programming are better if the 
algorithm is massively parallel, therefore we have to 
compute the matrix with a high number of threads. The 
chosen approach allocates one thread to each interaction. 
So, there are N×N threads defined. Each thread contains 
only the Gauss integration loop. This approach is very 
simple but has shown a good efficiency. Some 
optimizations on GPU architecture dealing with the use of 
shared memory will be discussed in the full paper. 

Like previously, Gauss point, jacobian and weight tables 
are generated on the CPU, then they are sent to the graphic 
card which returns the integration matrix. Currently, the 
diagonal correction is still operated by the CPU. 

V. PRELIMINARY RESULTS 

We have tested our approach on personal computer 
equipped with a GeForce 320M that is CUDA capable. It 
contains 48 graphical cores and 250MB of shared memory. 
The CPU is an Intel C2D 2.4 GHz with 4GB of RAM. The 
operating system (MacOS 10.6) is full 64 bits. Let us notice 
that this kind of computer is very classical and low cost.   

In our example, a square plate iso-potential conductor (1 
by 1 cm) is modeled. This example is very simple but the 
goal here is to evaluate the computation performances. The 
host computer computation is performed in double precision 
with 2 CPUs whereas the GPU device maximum supports 
single precision. The numerical integration on triangles is 
provided with 7 Gauss points. 

The time of the interaction matrix computation for only 
numerical integration is given for problems with different 

mesh sizes (fig. 1). Les us notice that the quality of the 
solution is only few influenced by the single precision 
conversion (less than 6e-5 % of error on charge density). 
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Figure 1 : comparison of  CPU and GPU (cumulative) computation times.  

 
First of all, the Java vectorized strategy seems to be quite 

efficient and fast (less than 5s to compute a 4000×4000 
fully dense matrix). As it was expected, the GPU 
computation is faster than the CPU one. We note a speed-up 
of around 3 times in spite of the fact that the graphic card 
used here is a very low cost one.  
 As expected, the time needed to transfer and convert the 
data from the graphic card to the computer decrease the 
performance of the algorithm. However, several ways to do 
it more efficiently have still to be studied.  
 The portability of the Java code has been tested on a 
win32 computer. After the setting of the JCuda library, only 
a recompilation of the Cuda kernel is needed to make the 
experiments. We do not report a speed-up because the 
graphic card (Quadro NVS 160M) only owns 8 cores. 

VI. CONCLUSION AND PERSPECTIVES 

We have reported in this paper a strategy for computing 
electromagnetic fields on Java platform with the JCuda 
library on a standard computer. These first results are 
maybe not so impressive, but these techniques are still not 
optimized and can be applied without buying additional 
hardware device. A far fields GPU-based FMM technique is 
currently under development to improve the speed of the 
computation like in the presented near field computation. 
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// Loop 1: on all the N elements 
For i=0,1,…N // can be parallelized if multi-CPU 
 // Loop 2: Gauss integration 
 For k=0,1,…N 
  // Vectorized interaction of one element with all elements 
  Integral(i,:) += 1/r(i,:,k) * weight(k:) * jacobian(k:) 
 End 
End 


